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I. Introduction  

Response surface approximations (RSA) are often used as inexpensive replacements for computationally 

expensive computer simulations.  Once a RSA has been computed, it is cheap to evaluate this “meta-model” or 

surrogate, and thus the RSA is often used in a variety of contexts, including optimization and uncertainty 

quantification.  Usually, some method of sampling points over the input domain is used to generate samples of the 

input variables.  These samples are run through the computer simulation.  A response surface approximation is then 

generated based on the sample points.
 8
   

 

This report presents a study investigating the dependency of the response surface method on the sampling type.  

The purpose of this study was to address the question:  Does a given RSA type perform better (in terms of a better 

fit) if a particular sampling method is used?  There is some evidence to suggest that quasi-Monte Carlo methods 

perform better than Latin Hypercube when sampling over a small number of input variables
17
.  There is also some 

evidence that kriging does not perform well when the points are highly collinear
1
.  Thus, we wanted to investigate 

these issues in more detail and provide some guidance within the context of the DAKOTA software framework on 

which sampling methods work best for various RSA types. 

 

The RSA types examined were kriging, polynomial regression, and multivariate adaptive regression splines 

(MARS).  The sampling types examines were Latin Hypercube, Halton, Hammersley, Centroidal Voronoi 

Tesselation (CVT), and standard Monte Carlo sampling.   The example problems were a 5-dimensional version of 

Rosenbrock’s function and a 10-dimension version of Paviani’s function.   RSA of the three response surface types 

were developed based on the five sampling methods. 

 

II. Sampling Methods 

The sampling methods presented in sections 2.1-2.5 below all can be used in uncertainty quantification, where 

one wants to understand the effect of input uncertainties on the distribution of outputs.  As an example, consider a 

variable Y that is a function of other variables X1, X2, …, Xk.  This function may be very complicated, for example, a 

computer model.  A question to be investigated is “How does Y vary when the Xs vary according to some assumed 

joint probability distribution?”  Related questions are “What is the expected value of Y?” and “What is the 99
th
 

percentile of Y?”   The sampling methods can all generate a number of samples of the random variables.  It is 

convenient to think of the samples as forming an (n × k) matrix of input where the i
th
 row contains specific values of 

each of the k input variables to be used on the i
th
 run of the computer model. 

 

A.  Latin Hypercube  
Latin hypercube sampling (LHS) is a stratified sampling method developed to address the need for more 

efficient uncertainty assessment.  LHS partitions the parameter space into bins of equal probability, with the goal of 

attaining a more even distribution of sample points in the parameter space than typically occurs with pure Monte 

Carlo sampling.  

 

Latin hypercube sampling, developed by McKay, Conover, and Beckman
15
, is a constrained sampling method 

which selects n different values from each of k variables X1, … Xk in the following manner.  The range of each 

variable is divided into n non-overlapping intervals on the basis of equal probability.  One value from each interval 

is selected at random with respect to the probability density in the interval.  The n values thus obtained for X1 are 

paired in a random manner (equally likely combinations) with the n values of X2.  These n pairs are combined in a 

random manner with the n values of X3 to form n triplets, and so on, until n k-tuplets are formed.  This is the Latin 

hypercube sample.   

 

The Latin hypercube sampling technique has been applied to many different computer models over the past 

thirty years.  A tutorial on Latin hypercube sampling may be found in Iman and Conover
12
.  A recent comparison of 

Latin hypercube sampling with other techniques is given in Helton and Davis
11
.  A method for inducing correlations 

among the input variables is given in Iman and Conover
13
.   Swiler and Wyss

21 
provide a User’s manual for the 

current LHS implementation in the DAKOTA software framework.  
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B. Halton Sampling 
Halton sampling is a type of sampling known as quasi-Monte Carlo sampling.  The goal of quasi-Monte Carlo 

methods is to produce sequences which have low discrepancy.  Discrepancy refers to the nonuniformity of the 

sample points within the hypercube. Discrepancy is defined as the difference between the actual number and the 

expected number of points one would expect in a particular set B (such as a hyper-rectangle within the unit 

hypercube), maximized over all such sets. Low discrepancy sequences tend to cover the unit hypercube reasonably 

uniformly. Quasi-Monte Carlo methods produce low discrepancy sequences, especially if one is interested in the 

uniformity of projections of the point sets onto lower dimensional faces of the hypercube (usually 1-D: how well do 

the marginal distributions approximate a uniform?)  

 

The quasi-Monte Carlo Halton sequence is a deterministic sequence determined by a set of prime bases.  The 

Halton sequence in base 2 starts with points 0.5, 0.25, 0.75, 0.125, 0.625, etc. The first few points in a Halton base 3 

sequence are 0.33333, 0.66667, 0.11111, 0.44444, 0.77777, etc.  Notice that the Halton sequence tends to alternate 

back and forth, generating a point closer to zero then a point closer to one. An individual sequence is based on a 

radix inverse function defined on a prime base. The prime base determines how quickly the [0,1] interval is filled in. 

Generally, the lowest primes are recommended.  

 

For more information about the Halton sequence, see References 9, 10, and 14.  In cases where a large number 

of input variables are sampled, Robinson and Atcitty
17 
recommend using a leaped sequence, where the user does not 

use every term in the Halton sequence but sets a “leap value” to the next prime number larger than the largest prime 

base.  Using the leaped values in the sequence can help maintain uniformity when generating sample sets for high 

dimensions. 

C.   Hammersley Sampling 
The Hammersley sequence is the same as the Halton sequence, except the values for the first random variable are 

equal to 1/N, where N is the number of samples. Thus, if one wants to generate a sample set of 100 samples for 3 

random variables, the first random variable has values 1/100, 2/100, 3/100, etc. and the second and third variables 

are generated according to a Halton sequence with bases 2 and 3, respectively.  Hammersley sequences can also be 

improved but shifting points
3.  Since we are using a relatively low number of dimensions for this study (five), we 

did not use a shifted or leaped version of either the Halton or Hammersley sequences. 

D. Centroidal Voronoi Tesselation 
Centroidal Voronoi Tesselation (CVT) sampling produces a set of sample points that are (approximately) a 

Centroidal Voronoi Tessellation. The primary feature of such a set of points is that they have good volumetric 

spacing; the points tend to arrange themselves in a pattern of cells that are roughly the same shape. To produce this 

set of points, an almost arbitrary set of initial points is chosen, and then an internal set of iterations is carried out. 

These iterations repeatedly replace the current set of sample points by an estimate of the centroids of the 

corresponding Voronoi subregions.
 4
 

 

CVT does very well volumetrically: it spaces the points fairly equally throughout the space, so that the points 

cover the region and are isotropically distributed with no directional bias in the point placement. There are various 

measures of volumetric uniformity which take into account the distances between pairs of points, regularity 

measures, etc. Note that CVT does not produce low-discrepancy sequences in lower dimensions, however: the 

lower-dimension (such as 1-D) projections of CVT can have high discrepancy. 
18
 

E. Monte Carlo 

What we are referring to as “pure” or “plain” Monte Carlo
16
 involves using a random number generator to 

generate random number sequences, with no effort to stratify the samples or construct explicit correlations between 

sample values for multiple input dimensions.   

F. DAKOTA Implementation 
This study employs DAKOTA

5
 version 3.3 on a 32-bit Intel microprocessor-based computer workstation 

running the Fedora Core 3 version of the Red Hat Linux operating system. This version of DAKOTA is available to 

the public, under the restrictions of the GNU General Public License, from http://endo.sandia.gov/DAKOTA. 

 

http://endo.sandia.gov/DAKOTA
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III. Response Surface Approximation Methods 

A. Kriging 
Kriging interpolation techniques were originally developed in the geostatistics and spatial statistics communities 

to produce maps of underground geologic deposits based on samples obtained at widely and irregularly spaced 

borehole sites
2. 
 The basic notion that underpins kriging is that the sample response values exhibit spatial correlation, 

with response values modeled via a Gaussian process around each sample location (i.e., samples taken close together 

are likely to have highly correlated response values, whereas samples taken far apart are unlikely to have highly 

correlated response values). Kriging methods have found wide utility due to their ability to accommodate irregularly 

spaced data, their ability to model general surfaces that have many peaks and valleys, and their exact interpolation of 

the given sample response values.  

 

The specific form of the kriging model used in this study is described in Giunta and Watson
7
 and Romero et al.

 19 

The form of the kriging model is 

   ( ) ( ) 1ˆ ( {1})
T

f x r x R fβ β−= + − ,    (1) 

where β is the generalized least squares estimate of the mean response; r(x) is an N x 1 vector of correlations 

between the current point x, and all N sample sites in parameter space; R is the N x N correlation matrix of all N 

sample sites; f is the vector of N sample site response values; and {1} is an N x 1 vector with all values set to unity. 

The terms in the correlation vector and matrix are computed using a Gaussian correlation function. The i
th
 term in 

r(x) is given by 

   
2

( )

1
exp

n i

i t t tt
r x xθ

=

 = − −  ∑ ,         (2) 

and, similarly, the i,j
th
 term in R is given by 

   
2

( ) ( )

, 1
exp

n i j

i j t t tt
R x xθ

=

 = − −  ∑ ,     (3) 

where n is the dimension of the parameter space; t is the index on the dimension of the parameter space; i = 

1,…,N; j = 1,…,N; and θ is the n x 1 vector of correlation parameters. In this study, all values of θ are set to unity, 

although in general, the values of θ can be estimated from the N sample response values via maximum likelihood 

estimation.  

 

However, there are drawbacks to kriging. The form of the kriging model requires the inversion of a potentially 

dense N x N matrix, where N is the number of sample points. Thus, the basic kriging method does not scale well for 

large N. In addition, if two or more of the sample points are close together, the N x N matrix becomes ill-

conditioned. Thus, while kriging tends to work well for sparse sets of samples, this method tends to break down as 

the number of samples increases.  Note that the kriging interpolation method is prone to ill-conditioning in the 

correlation matrix R as the number of sample points increases. This occurs because of the distance measure that is 

computed in Equation (3). As the distance between any two sample points i and j decreases, then the i
th
 and j

th
 rows 

in matrix R become linearly dependent, and in the limit where the points are the same, the matrix R becomes 

singular. Thus, this basic kriging method works well for a sparse set of sample points in an n-dimensional parameter 

space, but as the number of samples increases (and the inter-point distances decrease), the kriging method becomes 

unstable. 

 

B.  Polynomial Regression  
Polynomial regression methods are commonly used to create RSA from a set of data samples.  Regression is 

popular since the calculations are simple and the resulting function is a closed-form algebraic expression.  For 

example, a quadratic polynomial has the form: 

  j

k

i

k

j

ijii

k

i

i XXCXCCXY ∑∑∑
= ==

++=
1 1

,

1

0)(ˆ                                     (4) 

Where )(ˆ XY  is the estimate of target function at X and the C0, Ci, Ci,j, are constant coefficients.  To calculate 

the values of the coefficients, a system of linear equations is formed by applying the above polynomial model at 

each of N sampling points.   The number of sampling points must be greater than or equal to the number of 



5 

American Institute of Aeronautics and Astronautics 

 

ascending terms in the polynomial.  If equal, then the system of equations is exactly determined and the coefficients 

of the saturated polynomial can be immediately solved for and the resulting RSA exactly matches the target values 

at all of the sampling points.  When more sampling points than terms in the polynomial exist, then the system of 

equations is overdetermined, and a regression procedure is invoked to solve for the coefficients.  Because the 

regression polynomial does not have as many terms as there are data samples to fit, it is over-constrained and cannot 

in general match the true Y values at the sample points.  Most commonly, the method of least squares is used.   

 

C. Multivariate Adaptive Regression Splines 

The multivariate adaptive regression splines (MARS) function approximation method
6 
is based on a complex, 

recursive partitioning algorithm involving truncated power spline basis functions. The form of the MARS model is: 

  ( ) ( ) ( )
1 2

1 1

ˆ , ...
M M

o m m i m m i j

m m

f x a a B x a B x x
= =

= + + +∑ ∑    (5) 

where the Bm terms are the basis functions, the am terms are the coefficients of the basis functions, M1 is the 

number of one-parameter basis functions, and M2 is the number of two-parameter basis functions. The MARS 

software allows the user to select either linear or cubic spline basis functions. Cubic spline basis functions are used 

for this study. The regression aspect of the MARS algorithm involves a forward/backward stepping process to 

adaptively add/remove spline basis functions from the model. It is this regression process that generates the ao and 

am terms in Equation (5). The resulting MARS model is a C
2
-continuous function of piecewise cubic splines, but it 

will not exactly interpolate the data points that were used in calculating the coefficients. Thus, like polynomial 

regression, MARS has the ability to create smooth approximations to noisy data. Unlike kriging, MARS appears to 

have no upper limit on the number of samples that can be used in the function approximation process. 

 

 

IV. Results 

A. Analysis Approach 
We used Analysis of Variance (ANOVA) methods to determine if the means of various statistics of interest 

(such as root mean square error) were significantly different when using one sampling method vs. another, for a 

given response surface type.  Analysis of variance is used to examine the correlation between a response variable (in 

our case, measures of response surface goodness-of-fit) and the independent variables (in our case, sampling 

method).  ANOVA extends the two-sample t-test for testing the equality of two population means to a more general 

null hypothesis of comparing the equality of more than two means.  

We used two goodness-of-fit measures to evaluate the accuracy of a response surface constructed from a 

particular set of sample values:  root mean squared error (RMSE) and mean absolute error (MAE).  The definition of 

these terms is given below, where yi = actual or observed value and iŷ  is the value predicted by the response 

surface.  

∑
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Note that to evaluate each of these sampling methods, we generated 50 sample sets.  Each particular sample set 

had 100 sample points in 5 dimensions.  We evaluated a 5-dimensional version of the Rosenbrock function at these 

100 points.  The function is:  

∑
=

+ −+−=
4

1

222

1 ])1()(100[)(
i

iii xxxxf  

After evaluating the function at the 100 points, we constructed a response surface based on these points, then 

used the response surface to predict the values of the Rosenbrock function on a grid.  The grid had 9 “levels” of each 
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of the 5 input variables, so the grid had 59049 points.  We then constructed error metrics for each of the 50 sample 

sets (e.g., each sample set has one value for RMSE and MAE).  The ANOVA tests are looking across the 50 

samples, to see if the mean RMSE according to LHS sampling (for example) is different from the mean RMSE 

according to Halton sampling, etc.   

 

To illustrate the process, each sampling method was used to generate fifty sample sets, each with 100 samples in 

5-d.  For example, one of the LHS input sets was:  

 

X1 X2 X3 X4 X5 Rosenbrock Fn. 

-0.849 1.593 -0.983 -1.417 -0.676 2617.739 

-1.752 1.978 -0.293 0.710 0.591 1937.145 

0.987 -1.172 -1.301 -0.848 1.945 1986.069 

-0.476 -1.833 -1.623 -1.133 1.252 4346.873 

-1.522 -0.217 1.781 1.698 0.693 1649.052 

-0.425 -1.216 1.296 -1.083 -0.316 1194.997 

0.590 0.839 -1.261 -1.732 -0.873 3024.397 

0.653 1.712 -1.990 -1.452 0.936 5672.056 

1.277 -1.284 0.514 -0.188 -1.565 1262.108 

-1.347 -0.844 -0.816 0.461 0.326 957.117 
… 

Note that the input variables are all bounded between -2 and 2.  The predictions were constructed on a 5-d grid 

as follows (this example shows a prediction based on a kriging response surface constructed over the input samples):  

 

X1 X2 X3 X4 X5 Rosenbrock Fn. 
Kriging 
Prediction 

-2.00 1.50 2.00 2.00 1.50 1667.50 1186.91 

-1.50 1.50 2.00 2.00 1.50 1096.00 1186.22 

-1.00 1.50 2.00 2.00 1.50 1062.50 1185.58 

-0.50 1.50 2.00 2.00 1.50 1192.00 1184.99 

0.00 1.50 2.00 2.00 1.50 1259.50 1184.46 

0.50 1.50 2.00 2.00 1.50 1190.00 1183.99 

1.00 1.50 2.00 2.00 1.50 1058.50 1183.58 

1.50 1.50 2.00 2.00 1.50 1090.00 1183.22 

2.00 1.50 2.00 2.00 1.50 1659.50 1182.92 

-2.00 2.00 2.00 2.00 1.50 1837.00 1241.43 

-1.50 2.00 2.00 2.00 1.50 1440.50 1241.05 

-1.00 2.00 2.00 2.00 1.50 1532.00 1240.69 

-0.50 2.00 2.00 2.00 1.50 1736.50 1240.37 

0.00 2.00 2.00 2.00 1.50 1829.00 1240.07 

-2.00 1.50 2.00 2.00 1.50 1667.50 1186.91 
 

The difference between the actual Rosenbrock function value and the predicted function value was used in to 

construct an RMSE and MAE metric for each sample set.  Then, we used ANOVA to understand the spread of these 

metrics over the 50 sample sets, and to determine if the means were the same.  Below we present box plots and 

ANOVA results for each response surface type.  
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B. Results for Kriging RSA 
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Figure 1.  Kriging RMSE vs. Sample Type:  Rosenbrock Function 
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Figure 2.  Kriging MAE vs. Sample Type:  Rosenbrock Function 
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Based on the results in Figures 1 and 2, we can see that the mean values of RMSE and MAE are significantly 

greater for CVT than for the other sampling methods when using a kriging response surface.   For example, more 

detailed results for RMSE show that that the mean RMSE for CVT samples is 1251.9, while the mean RMSE for the 

other sampling methods is approximately 750.  The performance of the other sampling methods was 

indistinguishable in terms of comparing the means using a Tukey or Fisher pairwise comparison. 
 

                          Individual 95% CIs For Mean Based on Pooled StDev 

Level   N    Mean  StDev  -------+---------+---------+---------+-- 

1      50  1251.9  260.8                                   (-*--) 

2      50   747.1   88.2   (--*-) 

3      50   748.4   77.5   (--*-) 

4      50   730.0   77.7  (--*-) 

5      50   773.1  109.7     (-*--) 

                          -------+---------+---------+---------+-- 

                               800       960      1120      1280 

 

Finally, we looked at the residuals from one “prediction” sample set for each of the sampling methods.  This is 

shown in Figure 3 below.  One can visually see that the residuals from a CVT sample set are higher than those from 

the other sample types. 

 

 

Data
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59K Residuals from a Kriging model
based on various sample types:  CVT, LHS, Halton, Hammersley, and MC

Each symbol represents up to 2614 observations.
 

Figure 3.  Kriging Model Residuals from one response surface, evaluated on a grid of 59049 points,  

for the 5-D Rosenbrock function. 
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C. Results for Polynomial Regression RSA 
Figure 4 shows a similar pattern for the various sample types when a polynomial regression response surface is 

constructed based on these sample types.  We see that the mean value of RMSE is statistically significantly greater 

for CVT than for the other sampling methods when using a polynomial regression response surface. 

 

cvt=1 lhs=2 halt=3 hamm=4 MC=5

R
e
g
re
s
s
io
n
 R
M
S
E

54321

1500

1400

1300

1200

1100

1000

900

Boxplot of Regression RMSE by cvt=1 lhs=2 halt=3 hamm=4 MC=5

 
Figure 4.  Polynomial Regression RMSE vs. Sample Type:  5-D Rosenbrock 

 

However, the MAE for CVT is not greater than the other sampling methods when a polynomial regression model 

is used, in fact the reverse is true, as shown in Figure 5.  The MAE for CVT is the smallest of all the sampling 

methods and the mean MAE based on these 50 samples is statistically significantly smaller than the mean MAEs 

from the other sampling methods.  Also, Hammersley and Halton performed somewhat better than LHS and MC for 

MAE: 
 

 

                             Individual 95% CIs For Mean Based on Pooled StDev 

Level   N     Mean    StDev   -+---------+---------+---------+-------- 

1      50  0.38903  0.00565   (---*---) 

2      50  0.43180  0.02692                              (---*---) 

3      50  0.41749  0.01787                     (---*---) 

4      50  0.41194  0.01569                  (--*---) 

5      50  0.43662  0.03466                                 (---*---) 

                              -+---------+---------+---------+-------- 

                             0.384     0.400     0.416     0.432 

.   
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Figure 5.  Polynomial Regression MAE vs. Sample Type:  5-D Rosenbrock 

 

 

Although the “good” performance of CVT with respect to the mean absolute error metric may seem 

contradictory to the “poor” performance of CVT with respect to the root mean squared error metric, one needs to 

remember that these metrics track different behavior.  The Rosenbrock function is fairly flat in the middle of the 

domain chosen for this study, but its value increases sharply at the edges of the domain.  All of the response surface 

methods did poorly at predicting the 5-D Rosenbrock function at the edges of the domain.  Significant errors in 

“edge” fitting can lead to large RMSE, while average error is not affected much by lack of fit near the edges 

(remember that we are taking average error over 59049 points).   Also, it is instructive to look at the placement of 

the sample points upon which the regression surface is based.  If one looks at a plot of the CVT points in two 

dimensions, for example inputs X1 and X2, one can see they are “clustered” as shown in Figure 6.   Plotting any of 

the other inputs relative to each other (e.g., X3 vs. X5) shows a similar pattern.  This clustering may contribute to 

the method performing relatively well over all the space but poorly at the edges, which the RMSE metric 

emphasizes.  Note that there is an approach which “latinizes” or stratifies the CVT samples to give them better 1-D 

marginal densities, which may improve their potential use in response surface modeling.  This is described in 

Reference 18 and is implemented in the DAKOTA software.  However, we did not latinize the CVT samples for the 

purposes of this study.  
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Placement of X1, X2 in one CVT sample
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Figure 6.  Placement of X1, X2 in a 100 point CVT sample set 

 

 

D. Results for Multivariate Adaptive Regression Spline RSA 

The MARS results in Figure 7 again show that CVT performed poorly relative to the other sampling methods 

when comparing RMSE.  The performance of the other sampling methods showed minor differences, with Monte 

Carlo performing worse than LHS, Hammersley, and Halton.  

 
                          Individual 95% CIs For Mean Based on Pooled StDev                   

Level   N    Mean  StDev   -+---------+---------+---------+-------- 

1      50  1541.7  101.6                                  (-*) 

2      50   826.4  144.7      (*-) 

3      50   806.8  154.7     (*-) 

4      50   756.8  121.6   (*-) 

5      50   891.7  158.9        (-*) 

                           -+---------+---------+---------+-------- 

                          750      1000      1250      1500 

 

 

With MARS MAE, CVT did perform worse than the other sampling methods as shown by the ANOVA results 

below and Figure 8: 

 
                             Individual 95% CIs For Mean Based on Pooled StDev 

Level   N     Mean    StDev    +---------+---------+---------+--------- 

1      50  0.46926  0.03771                                   (--*--) 

2      50  0.34834  0.06711           (--*--) 

3      50  0.33059  0.06189       (--*--) 

4      50  0.31438  0.04752    (--*--) 

5      50  0.35646  0.05639            (--*--) 

                               +---------+---------+---------+--------- 

                             0.300     0.350     0.400     0.450 
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Figure 7.  MARS RMSE vs. Sample Type:  5-D Rosenbrock 
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Figure 8.  MARS MAE vs. Sample Type:  5-D Rosenbrock 
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Overall, kriging and MARS performed better than regression on the 5-D Rosenbrock function across all of the 

sample types except CVT.  For CVT, kriging and regression performed better than MARS.  Figure 9 shows a 2-way 

ANOVA, with the details below.   
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Figure 9.  Two-way ANOVA for 5-D Rosenbrock Function 

 
 

Two-way ANOVA: RMSE versus cvt=1 lhs=2 halt = 3 hamm=4 MC=5,    Kriging=1 
Reg=2 MARS =3 
 
Source             DF        SS       MS       F      P 

cvt=1 lhs=2 halt    4  38675254  9668814  717.25  0.000 

Kriging=1 Reg=2     2   5527618  2763809  205.02  0.000 

Interaction         8   1636826   204603   15.18  0.000 

Error             735   9908081    13480 

Total             749  55747779 

 

The two-way ANOVA table tells us that the effect of the differences in the sample type has the greatest effect on 

the variance of RMSE, followed by the response surface type. There is an interaction effect when CVT is included 

in the sample types.  However, if we remove CVT, then the analysis changes, as shown below.  With the removal of 

CVT, there is not a significant interaction between sample type and response surface method at the 0.05 level of 

significance.  This means that the performance of the response surface methods at a different level (regression, 

MARS, kriging) do not depend on the sampling types.   Also, the response surface type has become the most 

important at affecting the variance of RMSE.  This is shown by the SS (sum of squares) which measures how much 

the level means differ within each factor.    
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Two-way ANOVA: RMSE versus lhs=2 halt=3 hamm=4 MC=5, Kriging=1 Reg=2 
MARS = 3  
 
Source             DF        SS       MS       F      P 

lhs=2 halt=3 ham    3    549074   183025   17.83  0.000 

Kriging=1 Reg=2     2   4895728  2447864  238.44  0.000 

Interaction         6    122194    20366    1.98  0.066 

Error             588   6036389    10266 

Total             599  11603386 

 

S = 101.3   R-Sq = 47.98%   R-Sq(adj) = 47.00% 

 

Two-way analysis of MAE leads to the same result when CVT is removed:  there is no significant interaction 

between sampling type and response surface type:  

 

Two-way ANOVA: MAE versus lhs=2 halt=3 hamm=4MC=5, Kriging=1 Reg=2 
MARS = 3  
 
Source             DF       SS       MS        F      P 

lhs=2 halt=3 ham    3  0.07291  0.02430    14.93  0.000 

Kriging=1 Reg=2     2  3.28768  1.64384  1010.19  0.000 

Interaction         6  0.01010  0.00168     1.03  0.402 

Error             588  0.95683  0.00163 

Total             599  4.32751 

 

S = 0.04034   R-Sq = 77.89%   R-Sq(adj) = 77.48% 

 

An important point to note with the 5-D Rosenbrock function is that none of the response surface methods 

performed very well with respect to either RMSE or MAE.  The values of this function range from 0 to 14436 over 

the input domain [-2,2]
5
.  The histogram is shown in Figure 10.   
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Figure 10.  Histogram of 5-D Rosenbrock Function 

 

Because the function values vary so widely over a fairly small input domain, these response surface methods are not 

very accurate.  A root mean square error of 700, for example, or a mean absolute error of 40% which were 

demonstrated across sampling methods and response surface approximation types, shows the inaccuracy of these 
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response surfaces.  We chose this function to mimic a nonlinear response and to provide an extreme test case.  The 

next function we chose, the Paviani function, is better behaved in terms of the output not varying widely over the 

input domain. 

 

E. The Paviani Function 
After we performed the analysis on the Rosenbrock function, we wanted to perform a similar analysis on a 

higher dimensional function with different characteristics.  As mentioned, the Rosenbrock function is difficult to 

approximate with response surface methods as the function value sharply increases near the corners of the region    

[-2,2]
5
.   We chose the Paviani function because it is a nonlinear function which has interactions between all 10 

input variables.  The Paviani function in 10 dimensions is:  

  ∑ ∏
= =

−−+−=
10

1

10

1

2.022 )())10(ln)2((ln)(
i i

iii xxxxf . 

The input domain is defined as [2.001,9.999]
10
.  The minimum of this function is -45.7785 at the point where all 

of the input values equal 9.3503.  Figures 11 and 12 show scatterplots of x1,x2 vs. the Paviani function and x5, x6 

vs. the Paviani function.   

 

 
Figure 11.  X1 vs. X2 vs. the Paviani Function 

 
Figure 12.  X5 vs. X6 vs. the Paviani Function 
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We used a similar procedure as the Rosenbrock function for performing the analysis:  We generated 50 sample 

sets, where each sample set had 100 samples in the 10-dimensional input space.  With each of the 100 samples, we 

evaluated the Paviani function, and used those 100 values to construct kriging, regression, and adaptive spline 

response surfaces.  Then we used the response surfaces to evaluate the function at a grid.  The grid was constructed 

at three levels for each of the 10 inputs:  3, 5.5, and 8.  There were 59049 gridpoints which were used to construct 

the metrics such as RMSE and MAE.   Note that for the Paviani study, we chose some of the gridpoints to be 

slightly on the interior of the domain, whereas for the Rosenbrock function, some of the gridpoints were at the outer 

boundaries of the domain. 

 

The results are shown in Sections 4.6-4.8 below.  The most striking result is the reversal of CVT.  In the 

Rosenbrock studies, CVT did not perform well as a sampling method, especially in terms of the RMSE metric.  In 

the Paviani studies, CVT often outperformed the other sampling methods significantly.   

 

F. Results of Kriging RSA on the Paviani function 
Figures 13 and 14 below shows the results of the RMSE and the MAE for the kriging RSA of the Paviani 

function.  The important thing to note is that CVT does not perform well with respect to RMSE, but it performs very 

well if the goal is to minimize the mean absolute error of the response surface over the grid.  The CVT results are 

statistically significantly different than the rest of the sampling methods both for RMSE and for MAE.   
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Figure 13.  Kriging RMSE vs. Sample Type: Paviani function 
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Figure 14.  Kriging MAE vs. Sample Type:  Paviani function 

 

G. Results of Polynomial Regression RSA on the Paviani function 
Figure 15 shows the results of the RMSE for the kriging RSA of the Paviani function.  The Hammersley function 

performed horribly, with several values of RMSE on the order of 10
9
. 
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Figure 15.  Polynomial Regression RMSE vs. Sample Type:  Paviani function 
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The likely reason for this is that all 10 variables are important in the Paviani function.  In Hammersley sampling, 

the first variable is sampled according to a 1/N scheme, where N is the number of samples.  For example, if you are 

sampling 2 random variables between 0 and 1, with 100 samples, the first variable would have values of 1/100, 

2/100, etc.  This method of sampling causes the matrix (X’X) to become nearly singular, where X is the matrix of 

sample values.  Since one needs to invert the (X’X) matrix to obtain the regression coefficients, we see numerical 

problems when the condition number of this matrix is very high, for example, around 30. In addition, both 

Hammersley and Halton sampling can lead to highly correlated values between input variables.   For example, the 

correlation between input dimensions X1 and X2 looks very good as shown in Figure 16, but the correlation 

between X1 and X4 shows high correlation as shown in Figure 17: 
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Figure 16.  One 100-point sample set showing X1 vs. X2 in a Hammersley Sample 
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Figure 17.  One 100-point sample set showing X1 vs. X4 in a Hammersley Sample 



19 

American Institute of Aeronautics and Astronautics 

 

 

We were aware of the possibility of the correlations
3,17 

but we expected it to happen for much larger prime bases 

than the ones being used to generate these 5-d or 10-d input sets.  To avoid correlations amongst inputs in both 

Halton and Hammersley sequences, it is possible to implement a “fix” which involves skipping values of the 

sequence when generating data.  This is implemented in DAKOTA and is described in the DAKOTA reference 

manual, however we did not use it in this study. 

For the purposes of comparing the other sampling methods, we left the Hammersley sampling out and performed 

the ANOVA on the regression surfaces for the Paviani function.  One can see that CVT does very well with respect 

to both the RMSE and MAE metrics as shown in Figures 18 and 19. 
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Figure 18.  Polynomial Regression RMSE vs. Sample Type omitting Hammersley:  Paviani function 
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Figure 19.  Polynomial Regression MAE vs. Sample Type omitting Hammersley:  Paviani function 
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H. Results of Multivariate Adaptive Regression Spline (MARS) RSA on the Paviani function 

Figures 20 and 21 show the results of the RMSE and the MAE for the MARS RSA of the Paviani function.  

MARS performed very well on this function.    
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Figure 20.  MARS RMSE vs. Sample Type : Paviani function 
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Figure 21.  MARS MAE vs. Sample Type : Paviani function 

The two-way ANOVA results are shown in Figure 22 for RMSE.   Note that we removed Hammersley sampling 

from this analysis because of the very ill-fitting in the regression case. In general, MARS and kriging were better 
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response surface approximations than polynomial regression because the Paviani function varies highly in a local 

region, and the local fitting techniques tend to work better than global methods.  CVT again produces a different 

type of interaction than the other sampling methods.   It is interesting to note that regression performs better with 

CVT than the kriging or MARS. 
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Figure 22.  Two-way ANOVA for Paviani Function RMSE 

 

Two-way ANOVA: RMSE versus cvt=1 lhs=2 halt=3 MC=5, Krig=1 Reg=2 MARS = 3  
Source             DF       SS       MS      F      P 

cvt=1 lhs=2 halt    3  1115.66  371.887  77.47  0.000 

Kriging=1 Reg=2     2   470.48  235.242  49.00  0.000 

Interaction         6  2653.71  442.285  92.13  0.000 

Error             588  2822.78    4.801 

Total             599  7062.64 

 

 

cvt=1 

lhs=2            Individual 95% CIs For Mean Based on 

halt=3           Pooled StDev 

MC=5       Mean   -+---------+---------+---------+-------- 

1       5.00638   (--*--) 

2       7.55194                        (--*--) 

3       8.77014                                  (--*--) 

5       7.39510                       (--*--) 

                  -+---------+---------+---------+-------- 

                 4.8       6.0       7.2       8.4 

 

 

Kriging=1           Individual 95% CIs For Mean Based on 

Reg=2               Pooled StDev 

MARS = 3      Mean    +---------+---------+---------+--------- 

1          7.71176                              (---*----) 

2          7.89772                                (----*---) 

3          5.93319    (----*---) 

                      +---------+---------+---------+--------- 

                    5.60      6.30      7.00      7.70 
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When we look at the performance of the sampling methods and response surface types on minimizing MAE, we 

see different behavior, as shown in Figure 23.  In this figure, regression and MARS tended to perform better than 

kriging in producing lower mean absolute error metrics.  
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Figure 23.  Two-way ANOVA for Paviani Function MAE 

 

 
Two-way ANOVA: MAE versus cvt=1 lhs=2 halt=3 MC=5, Krig=1 Reg=2 MARS = 3  
Source             DF       SS       MS       F      P 

cvt=1 lhs=2 halt    3  315.789  105.263  277.64  0.000 

Kriging=1 Reg=2     2  142.149   71.074  187.47  0.000 

Interaction         6   43.601    7.267   19.17  0.000 

Error             588  222.929    0.379 

Total             599  724.469 

 

cvt=1 

lhs=2            Individual 95% CIs For Mean Based on 

halt=3           Pooled StDev 

MC=5       Mean  ------+---------+---------+---------+--- 

1       0.93474  (-*) 

2       2.20777                       (-*) 

3       2.93707                                   (-*-) 

5       2.28814                        (-*-) 

                 ------+---------+---------+---------+--- 

                     1.20      1.80      2.40      3.00 

 

 

Kriging=1           Individual 95% CIs For Mean Based on 

Reg=2               Pooled StDev 

MARS = 3      Mean  ----+---------+---------+---------+----- 

1          2.77839                                 (-*--) 

2          1.79290     (-*--) 

3          1.70451  (--*-) 

                    ----+---------+---------+---------+----- 

                      1.75      2.10      2.45      2.80 
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The overall trends are that CVT does best and Halton worst for both MAE and RMSE on the Paviani function.   

Kriging produced significantly higher (worse) MAE metrics than the MARS or regression, and MARS did much 

better at producing good RMSE metrics than regression or kriging.  Note that for both RMSE and MAE with the 

Paviani function, there are some interaction effects between the sampling type and response surface type.  The 

interaction was most significant with CVT, since the CVT results per response surface type had different trends than 

the other sampling types. 

V. Summary 

 

Many studies have been done examining the efficacy of sampling methods with respect to various metrics such 

as uniformity and point placement.  However, we have not found many studies which look at the sampling methods 

and how they perform with various response surface methods.  This study has attempted to do that.  We examined 

two problems with 5 input variables (the 5-D version of the Rosenbrock function) and 10 input variables (the 

Paviani function) respectively.  While these may not seem like high dimensional problems, many of the studies in 

the literature only use 2 or 3 input variables.  This work extends our understanding to larger problems.  Note that we 

did not include sample size as a factor under analysis.  We fixed the sample size at 100, based on what we have seen 

done in real applications with approximately the same number of input variables.  We did perform extensive tests, in 

that we generated 50 replicates of the 100 size sample for each sample type, and used those replicates to generate 

kriging, regression, and MARS response surfaces.  The response surface accuracy was then evaluated over a grid 

with 59049 points to calculate RMSE and MAE, and ANOVA studies were used to look at mean differences in 

factor levels. 

 

We had hoped to find some clear trends or interactions between sample type and response surface method.  We 

did not.  We did see some interesting behavior.   CVT produced some unusual results.  It was the worst performing 

sampling method on the Rosenbrock function in terms of RMSE and MAE, but it was the best sampling method on 

the Paviani function.  We feel that CVT warrants further investigation.   When we removed CVT from the analysis 

of the Rosenbrock function, the performance of the other sampling methods (LHS, Halton, Hammersley, and MC) 

was indistinguishable.  This is an important result, saying that the sample type essentially doesn’t matter, at least for 

the Rosenbrock function.   Overall, MARS and kriging appeared to produce the best overall fits to the 5-D 

Rosenbrock function.   

 

With the Paviani function, we found that CVT performed significantly better than the other sampling methods in 

terms of RMSE and MAE.   Halton sampling did not perform well.  Hammersley sampling also did not perform 

well, especially when used with polynomial regression surface approximations.  Regression was not able to produce 

reasonable response surface models with Hammersley samples because of the correlations in inputs.  This 

emphasizes that one needs to be cautious in the choice of sampling method used with response surface type. In the 

Paviani results, MARS did very well at producing low RMSE and MAE.  However, regression did well only on one 

metric:  regression did well minimizing MAE but not RMSE.  Kriging did not do particularly well on either.  This 

demonstrates the fact that different response surface approximations have characteristics that will produce different 

results depending on one’s metric of interest:  overall scaled accuracy as measured by a mean absolute error, 

extreme errors which are emphasized in RMSE, overall min or max error, etc.   

 

We did compare our results with those of Simpson, Lin, and Chen
20
.  They also did a comparison of sampling 

methods and response surface type on two problems, one with 3 input variables and one with 14 input variables.  

Both problems exhibited nonlinear behavior.  Simpson et al. showed some general trends in their paper.  For 

example, the Hammersley sequence gave low results for RMSE, but often was quite high when measuring 

maximum absolute deviation.  Overall, they found that orthogonal arrays and quasi-uniform designs tended to do 

better than pure random or Latin Hypercube designs.  We did not find that in our study.  They did mention that 

Hammersley sampling was not able to be used with regression modeling on their 14 variable problem because of the 

singular matrix (X’X), which agrees with our results.  Finally, many of their results had a similar interpretation as 

ours:  certain response surface types worked well on one function but not another, certain sampling types worked 

well with respect to RMSE but not MAE or vice-versa, etc.   Based on our study and Simpson, Lin, and Chen’s 

study, we feel there is no “silver bullet” approach.  When using sampling methods to construct response surface 

approximations, the analyst must be aware of various pitfalls, and ideally use at least two types of sampling and 
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response surface approximations to understand the characteristics of his or her problem to model it reasonably 

accurately with a response surface model. 

 

VI. References 

1. Booker, Andrew.  “Well-conditioned Kriging Models for Optimization of Computer Simulations.”  Technical Document 

Series, M&CT-TECH-002, Phantom Works, Mathematics and Computing Technology, The Boeing Company, Seattle, WA, 

2000. 

2.  Cressie, N. (1991), Statistics of Spatial Data, John Wiley and Sons, New York, NY. 

3. Diwekar U. M. and J. R. Kalagnanam (1997). "An Efficient Sampling Technique for 

Optimization Under Uncertainty",  AIChE Journal, 43, 440. 

4.  Du, Q., V. Faber, and M. Gunzburger,1999. "Centroidal Voronoi Tessellations: Applications and Algorithms," SIAM 

Review, Volume 41, 1999, pages 637-676.  

5. Eldred, M.S., Giunta, A.A., van Bloemen Waanders, B.G., Wojtkiewicz, S.F., Jr., Hart, W.E. and Alleva, M.P. (2001), 

DAKOTA Users Manual: Version 3.1, Sandia Technical Report SAND2001-3796, Sandia National Laboratories, Albuquerque, 

NM. (see: http://endo.sandia.gov/DAKOTA/software.html) 

6.  Friedman, J.H. (1991), ‘‘Multivariate Adaptive Regression Splines,’’ Annals of Statistics, Vol. 19, No. 1, pp. 1-141. 

7. Giunta, A. A., and Watson, L. T., “A Comparison of Approximation Modeling Techniques: Polynomial Versus 

Interpolating Models,” AIAA Paper 98-4758 in Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on 

Multidisciplinary Analysis and Optimization, St. Louis, MO, Sept. 1998, pp. 392-404. 

8. Giunta, A. A., Wojtkiewicz, S. F., Jr., and Eldred, M. S. (2003), ''Overview of Modern Design of Experiments Methods for 

Computational Simulations,'' paper AIAA-2003-0649 in Proceedings of the 41st AIAA Aerospace Sciences Meeting and Exhibit, 

Reno, NV. 

9.  Halton, J. H. "On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, 

Numerische Mathematik,Volume 2 pages 84-90.  

10.  Halton, J. H. and G. B. Smith, 1964. Algorithm 247: Radical-Inverse Quasi-Random Point Sequence, Communications 

of the ACM, Volume 7, pages 701-702.  

11. Helton, J. C. and Davis, F. J. (2001).  “Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of 

Complex Systems.”  Technical Report SAND2001-0417, Sandia National Laboratories, Albuquerque, NM. 

12. Iman, R.L., and Conover, W.J.  (1982a).  “Sensitivity Analysis Techniques:  Self-Teaching Curriculum,” Nuclear 

Regulatory Commission Report, NUREG/CR-2350, Technical Report SAND81-1978, Sandia National Laboratories, 

Albuquerque, NM. 

13.  Iman, R.L., and Conover, W.J.  (1982b).  “A Distribution-Free Approach to Inducing Rank Correlation Among Input 

Variables,” Communications in Statistics, B11(3), 311-334. 

14.  Kocis, L. and W. Whiten, 1997. "Computational Investigations of Low-Discrepancy Sequences," ACM Transactions on 

Mathematical Software, Volume 23, Number 2, 1997, pages 266-294.  

15.  McKay, M.D., Beckman, R.J., and Conover, W.J. (1979), “A Comparison of Three Methods for Selecting Values of 

Input Variables in the Analysis of Output from a Computer Code,” Technometrics, Vol. 21, No. 2, pp. 239-245. 

16.  Metropolis N. and Ulam, S., “The Monte Carlo Method,” Journal of the American Statistical Association, Vol. 44, No. 

247, 1949, pp. 335-341. 

17.  Robinson, D.G. and C. Atcitty, 1999. "Comparison of Quasi- and Pseudo-Monte Carlo Sampling for Reliability and 

Uncertainty Analysis." Proceedings of the AIAA Probabilistic Methods Conference, St. Louis MO, AIAA99-1589. 

18.  Romero, V.J., Burkardt, J.V., Gunzburger, M.D., and J.S. Peterson (2003). “Initial Evaluation of Pure and “Latinized” 

Centroidal Voronoi Tesselation for Non-Uniform Statistical Sampling.”  SAMO Conference Paper, 2003. 

19.  Romero, V. J., Swiler, L. P., and Giunta, A. A., ''Construction of Response Surfaces Based on Progressive-Lattice-

Sampling Experimental,'' Structural Safety, Vol. 26, No. 2, 2004, pp. 201-219. 

20.  Simpson, T., Dennis, L., and Chen, W. (2002).  “Sampling Strategies for Computer Experiments:  Design and Analysis” 

Journal of International Journal of Reliability and Application, 2(3), 209-240. 

21.  Swiler, L. P. and Wyss, G. D., “A User’s Guide to Sandia’s Latin Hypercube Sampling Software: LHS UNIX 

Library/Standalone Version,” Sandia Technical Report SAND2004-2439, Sandia National Laboratories, Albuquerque, NM, 

2004. 

 


	Introduction
	Sampling Methods
	Latin Hypercube
	Halton Sampling
	Hammersley Sampling
	Centroidal Voronoi Tesselation
	Monte Carlo
	DAKOTA Implementation

	Response Surface Approximation Methods
	Kriging
	Polynomial Regression
	Multivariate Adaptive Regression Splines

	Results
	Analysis Approach
	Results for Kriging RSA
	Results for Polynomial Regression RSA
	Results for Multivariate Adaptive Regression Spline RSA
	The Paviani Function
	Results of Kriging RSA on the Paviani function
	Results of Polynomial Regression RSA on the Paviani function
	Results of Multivariate Adaptive Regression Spline (MARS) RSA on the Paviani function

	Summary
	References



